Fragmentation and Brittleness: Richard Stacey

Moderators:

Profs. N. Fowkes, D. Mason, C.M. Khalique, G. Hocking

Student Members:

Z. Dlamini, T. Motsepa, S.O. Ojako, A. Nour, V. Magagula

Mathematics In Industry Study Group - 2016

January 15, 2016

Introduction

- Tough rocks produce larger fragments after blasting. There is a standard model for size estimation.
- Recently a law case arose whereby the standard model didn't correctly determine fragment size.
- Tarasov has defined a novel brittleness index for rocks based on experimental lab tests.

Question: Can this be used to improve estimates for fragment size and distribution?

The Standard Model: Kuz-Ram model

$$
x_{m}=A K^{-0.8} Q^{1 / 6}\left(\frac{115}{R W S}\right)^{\frac{19}{20}}
$$

where:
x_{m} : Mean particle size.
K: Powder factor (kg explosive $/ \mathrm{m}^{3}$)
Q: mass of explosive in hole (kg)
A: a rock 'factor' (0.8-22!)
RWS: The relative weight strength of the explosive used.
This formula doesn't take into account features of the blast (rock type, bore hole spacing, geometry of the site....)

$$
R_{x}=\exp \left[-0.693\left(x / x_{m}\right)^{n}\right] \text { with } n=0.7-2
$$

Note especially that there is no term in the equation that explicitly takes into account rock properties except A. (eg .brittleness).

Stress Strain Curves: Tarasov (Brittleness Index)

Definition of the Brittle and Ductile rock

DUCTILEMATERIAL

- Brittle rocks crack.
- Ductile rocks 'neck'.
- In general rocks are neither one nor the other.
- Brittleness is used to describe one of the rock characteristics.

Energy loss is greater for a ductile rock.

Stress Strain Curves: Tarasov (Brittleness Index)

The brittleness 'index' (β) : Defines the extent to which a rock is 'Brittle/Hard' (Class 2) or 'Ductile' (Class 1) using a stress/strain lab test.

BRITTLE

Stress

Energy loss

Stress
DUCTILE

Energy loss

Note the very different shape after the yield stress is exceeded. The brittleness index β is the area ratio (shaded/total) Question: Why does this matter?
The Tarasov index quantifies the energy loss associated with stress application!
For a hard/brittle rock much more elastic energy is retained after rupture which means little energy goes into 'Cracking'.

Can this index be used to obtain a better result!

Possible Models

- Energy/Scaling/Statistical model.
- Two mechanistic models.
- Composite models.

A Scaling/Energy Model: Mean particle size

The aim is to improve on the Kuz-Ram model using dimensional analysis.

Model parameters

- Yield stress $Y=\frac{M}{T^{2} L}$.
- Brittleness index (β) is dimensionless.
- Energy per unit time per unit volume due to explosive charge $=\epsilon=\frac{M}{T^{3} L}$.
- Energy available for fracturing per unit time and volume $=\beta \epsilon$.
- Speed of propagation of elastic wave (primary wave) $=C_{P}=\frac{L}{T}$
- Mean fragment size $=X_{m}=L$
- A is a universal constant: applies to all material.

We combine the above parameters to obtain a dimensionally consistent expression for fragment size.
The possible combinations are:

$$
X_{m}=A Y^{a}(\beta \epsilon)^{b} C_{P}^{c}=A\left(\frac{M}{T^{2} L}\right)^{a}\left(\beta \frac{M}{L T^{3}}\right)^{b}\left(\frac{L}{T}\right)^{c}
$$

Dimensional analysis: Mean particle size

Dimensionally compatible providing:

- $L: 1=-a-b+c$
- $M: 0=a+b$
- T: $0=-2 a-3 b-c$

By solving the last equation we will find that $a=1, b=-1, c=1$. This gives:

$$
* * * x_{m}=A \frac{Y C_{P}}{\beta \epsilon} * * *
$$

Where $C_{P}=\sqrt{\frac{E(1-\nu)}{\rho(1+\nu)(1-2 \nu)}} \mathrm{E}$ is Young's modulus, ν Poisson's Ratio, ρ the density.
Note that this formula includes the important rock properties and is the only combination that makes dimensional sense!

Breaking Springs Model - Simple 1d approach

- Springs $\left(n_{0}\right)$ are stretched by an external force $\mathcal{T}_{\text {ext }}$.
- Individual springs have same spring constant (k)
- but have different breaking strengths $T_{s}^{c r i t}$.
- External force increased \Rightarrow some springs break
- $\ldots .$. remaining (n) springs bear the load.

Can model mimic experimental stress-strain results (Class $1 \& 2$)? If "Yes", correlate equivalent parameters.

Spring Breakage Distribution

Intact rock corresponds to intact springs, cracks correspond to broken springs. If we assume a normal distribution for breakage:

$$
f=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\left[\frac{\left(T_{s}-\bar{T}_{s}\right)^{2}}{2 \sigma^{2}}\right]}
$$

The green shading shows springs that have broken after the application of an individual spring tension T_{s}.

Equations

Single spring: Tension T_{s} causes displacement \times (initial length I_{0}):

$$
T_{s}=k x
$$

Multiply by number of intact springs $n \Rightarrow$ stress/strain reln:

$$
n T_{s} \equiv \mathcal{T}_{\text {ext }}=\left(n k l_{0}\right) \frac{x}{\digamma_{0}} \equiv E_{\text {eff }} \frac{x}{l_{0}}
$$

The effective Young's modulus is defined in terms of k and n.

$$
E_{e f f}=E_{0}\left(\frac{n}{n_{0}}\right)
$$

Springs

Distribution gives number of survivors supporting the load:

$$
\begin{aligned}
\frac{n}{n_{0}} & =1-\int_{0}^{T_{s}} f\left(T_{s}\right) d T_{s} \\
\text { so } \quad E_{e f f} & =E_{0}\left[1-\int_{0}^{T_{s}} f\left(T_{s}\right) d T_{s}\right]
\end{aligned}
$$

For Normal distribution (the exact result):

$$
E_{e f f}\left(T_{s}\right)=E_{0}\left[1-\operatorname{Erf}\left(\frac{T_{s}-\bar{T}_{s}}{\sqrt{2 \pi} \sigma}\right)\right]
$$

and the stress/strain results can be obtained.

$$
\begin{equation*}
\mathcal{T}_{\text {ext }}=n T_{s}=E_{0}\left[1-\operatorname{Erf}\left(\frac{T_{s}-\bar{T}_{s}}{\sqrt{2 \pi} \sigma}\right)\right] \frac{x}{I_{0}} \tag{1}
\end{equation*}
$$

.... unfortunately, don't know n, T_{s}.

1d model Simulations - 1

Randomly generated normal dsns. of spring breakage tensions for $\sigma=1,2,4$. Left to right - decreasing brittleness. $N=1000$ springs/bonds.

1d model Simulations - 2

- Corresponding stress-strain relation diagrams. Less brittle \Rightarrow wider curve.
- Agrees well with Class 2 materials
- Distribution of bond breakage/cracking should correlate to particle sizes

Results

- The results asymptote to a T_{s} with all springs broken
- If applied stress is cycled there is offset, but process repeats
- The rate of approach to the asymptote depends on the distribution width σ.
- One can associate rock characteristics with model parameters (Young's modulus, Yield strength, brittleness)
- The shape is right for Class 2 brittle rocks. But Class 1 models aren't covered; k variations needed?

A Continuum State Change Model

- The end of a semi-infinite rock face (or rod) is impulsively hit.
- If stress levels generated are less than fracture levels $T_{\text {crit }}$ then a longitudinal pressure pulse travels away from the face at speed $\sqrt{E_{0} / \rho}$.
- If stress levels exceed $T_{\text {crit }}$ then the rock will partially crush/crack.

Rock Crushing

Rock Crushing

Note that the transmitted stress wave is reduced due to rock crushing.

Equations

Newton's Law gives: $\tau_{x x, x}=\rho u_{t t}$, so that with $\tau_{x x}=E^{*} u_{x}$, we get

$$
E^{*} u_{x x}=\rho u_{t t}
$$

in the (damaged, damaged) and undamaged regions resp.

Ductile and Brittle Rocks

- Note that across the front the equation changes from elliptic to wave type for ductile materials, but not for brittle materials. Interesting!
- Thus in the brittle case the energy decays slowly and the wave travels a great distance. For ductile materials the impulse is quickly damped.
- The extent of damage (cracking) can be assessed using a state change idea. The internal energy of the cracked rock is different.
- The primary aim of the analysis is to determine the speed of travel of the front, the extent of propagation, and the expected fragment size.

Conclusions: The Models

- The energy model. If it works then it could be really important. Needs checking with data
- Springs model: early days but is promising.
- State change model: needs development.

