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Introduction

I Tough rocks produce larger fragments after blasting. There is
a standard model for size estimation.

I Recently a law case arose whereby the standard model didn’t
correctly determine fragment size.

I Tarasov has defined a novel brittleness index for rocks based
on experimental lab tests.

Question: Can this be used to improve estimates for fragment size
and distribution?



The Standard Model: Kuz-Ram model

xm = AK−0.8Q1/6(
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RWS
)
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where:
xm: Mean particle size.
K: Powder factor (kg explosive/m3 )
Q: mass of explosive in hole (kg)
A: a rock ‘factor’ (0.8-22 !)
RWS: The relative weight strength of the explosive used.
This formula doesn’t take into account features of the blast (rock
type, bore hole spacing, geometry of the site....)

Rx = exp [−0.693(x/xm)n]with n = 0.7− 2

Note especially that there is no term in the equation that explicitly
takes into account rock properties except A. (eg .brittleness).



Stress Strain Curves: Tarasov (Brittleness Index)

Definition of the Brittle and Ductile rock

I Brittle rocks crack.

I Ductile rocks ‘neck’.

I In general rocks are neither one nor the other.

I Brittleness is used to describe one of the rock characteristics.

Energy loss is greater for a ductile rock.



Stress Strain Curves: Tarasov (Brittleness Index)

The brittleness ‘index’ (β): Defines the extent to which a rock is
’Brittle/Hard’ (Class 2) or ’Ductile’ (Class 1) using a stress/strain
lab test.



Note the very different shape after the yield stress is exceeded.
The brittleness index β is the area ratio (shaded/total)
Question: Why does this matter?
The Tarasov index quantifies the energy loss associated with stress
application!
For a hard/brittle rock much more elastic energy is retained after
rupture which means little energy goes into ’Cracking’.

Can this index be used to obtain a better result!



Possible Models

I Energy/Scaling/Statistical model.

I Two mechanistic models.

I Composite models.



A Scaling/Energy Model: Mean particle size
The aim is to improve on the Kuz-Ram model using dimensional
analysis.
Model parameters

I Yield stress Y = M
T 2L

.

I Brittleness index (β) is dimensionless.

I Energy per unit time per unit volume due to explosive charge
= ε = M

T 3L
.

I Energy available for fracturing per unit time and volume =βε.

I Speed of propagation of elastic wave (primary wave)=CP = L
T

I Mean fragment size= Xm = L

I A is a universal constant: applies to all material.

We combine the above parameters to obtain a dimensionally
consistent expression for fragment size.
The possible combinations are:

Xm = AY a(βε)bC c
P = A(

M
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)a(β
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Dimensional analysis: Mean particle size

Dimensionally compatible providing:

I L : 1 = −a− b + c

I M : 0 = a + b

I T : 0 = −2a− 3b − c

By solving the last equation we will find that a = 1, b = −1, c = 1.
This gives:

∗ ∗ ∗xm = A
YCP

βε
∗ ∗∗

.
Where CP =

√
E(1−ν)

ρ(1+ν)(1−2ν) E is Young’s modulus, ν Poisson’s

Ratio, ρ the density.
Note that this formula includes the important rock properties and
is the only combination that makes dimensional sense!



Breaking Springs Model - Simple 1d approach

Extension force

n springs

(Some broken)

I Springs (n0) are stretched by an external force Text .

I Individual springs have same spring constant (k)

I .... but have different breaking strengths T crit
s .

I External force increased ⇒ some springs break

I ..... remaining (n) springs bear the load.

Can model mimic experimental stress-strain results (Class 1 & 2)?

If “Yes”, correlate equivalent parameters.



Spring Breakage Distribution

Intact rock corresponds to intact springs, cracks correspond to
broken springs. If we assume a normal distribution for breakage:

f =
1√
2πσ

e
−
[
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]

2 4 6 8 10
T_s

0.2

0.4

0.6

0.8

1.0

f

TA

The green shading shows springs that have broken after the
application of an individual spring tension Ts .



Equations

Single spring: Tension Ts causes displacement x (initial length l0):

Ts = kx

Multiply by number of intact springs n ⇒ stress/strain reln:

nTs ≡ Text = (nkl0)
x

l0
≡ Eeff

x

l0

The effective Young’s modulus is defined in terms of k and n.

Eeff = E0(
n

n0
)



Springs

Distribution gives number of survivors supporting the load:

n

n0
= 1−

∫ Ts

0
f (Ts)dTs

so Eeff = E0

[
1−

∫ Ts

0
f (Ts)dTs

]
For Normal distribution (the exact result):

Eeff (Ts) = E0

[
1− Erf

(
Ts − T̄s√

2πσ

)]
and the stress/strain results can be obtained.

Text = nTs = E0

[
1− Erf

(
Ts − T̄s√

2πσ

)]
x

l0
(1)

.... unfortunately, don’t know n,Ts .



1d model Simulations - 1
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Randomly generated normal dsns. of spring breakage tensions for
σ = 1, 2, 4. Left to right - decreasing brittleness. N = 1000
springs/bonds.



1d model Simulations - 2
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I Corresponding stress-strain relation diagrams. Less brittle ⇒
wider curve.

I Agrees well with Class 2 materials

I Distribution of bond breakage/cracking should correlate to
particle sizes



Results
I The results asymptote to a Ts with all springs broken
I If applied stress is cycled there is offset, but process repeats
I The rate of approach to the asymptote depends on the

distribution width σ.
I One can associate rock characteristics with model parameters

(Young’s modulus, Yield strength, brittleness)
I The shape is right for Class 2 brittle rocks.

But Class 1 models aren’t covered; k variations needed?
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x

TA



A Continuum State Change Model

X

Rock

I The end of a semi-infinite rock face (or rod) is impulsively hit.

I If stress levels generated are less than fracture levels Tcrit then
a longitudinal pressure pulse travels away from the face at
speed

√
E0/ρ.

I If stress levels exceed Tcrit then the rock will partially
crush/crack.



Rock Crushing
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Note that the transmitted stress wave is reduced due to rock
crushing.



Equations

Stress

Strain

E0 E1

(τxx )

(ux )

fig:testfig

Newton’s Law gives: τxx ,x = ρutt , so that with τxx = E ∗ux , we get

E ∗uxx = ρutt

in the (damaged, damaged) and undamaged regions resp.



Ductile and Brittle Rocks

I Note that across the front the equation changes from elliptic
to wave type for ductile materials, but not for brittle
materials. Interesting!

I Thus in the brittle case the energy decays slowly and the wave
travels a great distance. For ductile materials the impulse is
quickly damped.

I The extent of damage (cracking) can be assessed using a
state change idea. The internal energy of the cracked rock is
different.

I The primary aim of the analysis is to determine the speed of
travel of the front, the extent of propagation, and the
expected fragment size.



Conclusions: The Models

I The energy model. If it works then it could be really
important. Needs checking with data

I Springs model: early days but is promising.

I State change model: needs development.


